Understanding and Using the Generalized Pareto Distribution (GPD)

Understanding and Using the Generalized Pareto Distribution (GPD)

The Generalized Pareto Distribution (GPD) is a probability distribution used in Extreme Value Theory to model values that exceed a certain high threshold. It is widely used in finance, insurance, hydrology, and environmental science.


📘 What is the GPD?

The GPD models the distribution of excess values over a threshold. That is, if we set a threshold u, the GPD models the distribution of X − u | X > u.

🔣 Probability Density Function (PDF)

f(x) = (1 / σ) * (1 + ξ * x / σ)^(-1/ξ - 1)
  • ξ: Shape parameter (controls the heaviness of the tail)
  • σ: Scale parameter (spread)
  • Support: x ≥ 0 if ξ ≥ 0; 0 ≤ x ≤ -σ/ξ if ξ < 0

🛠️ Fitting GPD to Synthetic Insurance Claims (Python Example)

Let’s simulate a small dataset of insurance claims, set a threshold, and fit a Generalized Pareto Distribution using scipy.

🔢 Step 1: Simulate Data

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import genpareto

# Seed for reproducibility
np.random.seed(42)

# Simulated insurance claims
claims = np.concatenate([
    np.random.exponential(scale=1000, size=20),   # regular claims
    np.random.exponential(scale=5000, size=5)     # large claims
])

print("Claims sample:", np.round(claims, 2))

🎯 Step 2: Define a High Threshold

threshold = 3000  # Choose a threshold
excesses = claims[claims > threshold] - threshold

print("Excesses over threshold:", np.round(excesses, 2))

🔧 Step 3: Fit the GPD

shape, loc, scale = genpareto.fit(excesses, floc=0)

print(f"Shape (ξ): {shape:.3f}")
print(f"Scale (σ): {scale:.3f}")

📊 Step 4: Visualize Fit

x = np.linspace(0, max(excesses), 100)
pdf = genpareto.pdf(x, shape, loc=0, scale=scale)

plt.hist(excesses, bins=10, density=True, alpha=0.6, label="Histogram of Excesses")
plt.plot(x, pdf, 'r-', label="GPD Fit")
plt.xlabel("Excess Over Threshold")
plt.ylabel("Density")
plt.title("GPD Fit to Excess Insurance Claims")
plt.legend()
plt.grid(True)
plt.show()

🧠 Interpreting Parameters

Parameter Role Interpretation
ξ (Shape) Tail heaviness ξ > 0 → heavy tail (e.g., large risks)
ξ = 0 → exponential tail
ξ < 0 → bounded tail (max cap)
σ (Scale) Spread of excesses Larger σ = more variability in extreme values
μ (Location) Threshold baseline (often 0) Shift of the distribution, typically fixed at 0

📈 Understanding the PDF

The PDF of the GPD shows the likelihood of an excess value. For example:

  • If the PDF is high near zero, most excesses are small.
  • If the PDF decays slowly (ξ > 0), large excesses are more probable.
  • If the PDF drops quickly (ξ < 0), very large excesses are rare.

📁 Optional: Save the Data in a CSV (Kaggle/Colab)

import pandas as pd

# Save the data to CSV
df = pd.DataFrame({'claims': claims})
df.to_csv('/kaggle/working/claims.csv', index=False)

# Reload the data
df_loaded = pd.read_csv('/kaggle/working/claims.csv')

✅ Summary

  • Use GPD for modeling values above a high threshold (extremes).
  • Fit shape and scale using MLE (e.g., scipy.stats.genpareto.fit).
  • Interpret shape to understand tail behavior (risk of extremes).

This approach is powerful for risk analysis, reinsurance modeling, climate extremes, and more.

Comments

Popular posts from this blog

Risk Management for Data Scientists in Insurance and Finance

Building and Deploying a Recommender System on Kubeflow with KServe

CrewAI vs LangGraph: A Simple Guide to Multi-Agent Frameworks